974 resultados para 090407 Process Control and Simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networked control systems (NCSs) offer many advantages over conventional control; however, they also demonstrate challenging problems such as network-induced delay and packet losses. This paper proposes an approach of predictive compensation for simultaneous network-induced delays and packet losses. Different from the majority of existing NCS control methods, the proposed approach addresses co-design of both network and controller. It also alleviates the requirements of precise process models and full understanding of NCS network dynamics. For a series of possible sensor-to-actuator delays, the controller computes a series of corresponding redundant control values. Then, it sends out those control values in a single packet to the actuator. Once receiving the control packet, the actuator measures the actual sensor-to-actuator delay and computes the control signals from the control packet. When packet dropout occurs, the actuator utilizes past control packets to generate an appropriate control signal. The effectiveness of the approach is demonstrated through examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ISSCT Process Section workshop held in Réunion 20–23 October 2008 was attended by 51 delegates from 10 countries. The theme was Green cane impact on sugar processing. The workshop provided a valuable and timely opportunity to review and discuss the impact on factory operations and performance from a green cane supply that could include significant levels of trash. It was particularly relevant to those mills that were considering options to boost their biomass intake for increased co-generation capacity. Several of the speakers related their experiences with processing ‘whole of crop’ cane supplies through the factory. Speakers detailed the problems and increased losses that were incurred when processing cane with high trash levels. The consensus of the delegates was that the best scenario would involve a cane-cleaning plant at the factory so that only clean cane would be processed through the factory. The forum recommended that more research was required to address the issues of increased impurities in the process streams associated with high trash levels. Site visits to the two factories and a cane-delivery station were arranged as part of the workshop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model has been developed to track the flow of cane constituents through the milling process. While previous models have tracked the flow of fibre, brix and water through the process, this model tracks the soluble and insoluble solid cane components using modelling theory and experiment data, assisting in further understanding the flow of constituents into mixed juice and final bagasse. The work provided an opportunity to understand the factors which affect the distribution of the cane constituents in juice and bagasse. Application of the model should lead to improvements in the overall performance of the milling train.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans have altered environments and enhanced their wellbeing unlike any other creature on the planet (Hielman & Donda, 2007); this is no different whether the environment is ecological, social or organizational. In recent times, the debate regarding greenhouse effects on the global weather patterns and the sustainment of the earth’s temperature necessary for life support has become quite infamously problematic as society pushes to find new sources of energy both renewable and environmentally sustainable. The feedback received on CSG from both government and companies alike is that the opportunities this industry creates has a lasting range of social and economic benefits worth over fifty (50) billion dollars in projects (Queensland Government, 2013). This however, has been overshadowed by social activist and lobbyist groups as ‘Lock the Gate Alliance’ saying, as one part of their report noted from the National Water Commission, “coal seam gas development could cause significant social impacts by disrupting current land-use practices and the local environment through infrastructure construction and access” (Lock the Gate Alliance, n.d.), and “In recent years both a NSW and Federal Senate inquiry into coal seam gas production were deliberately mislead by an organization that claims to work on behalf of the farming community, This is the battle for the end of the fossil fuel industry. This is the end game..." (Ward, 2013).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Food waste is a current challenge that both developing and developed countries face. This project applied a novel combination of available methods in Mechanical, agricultural and food engineering to address these challenges. A systematic approach was devised to investigate possibilities of reducing food waste and increasing the efficiency of industry by applying engineering concepts and theories including experimental, mathematical and computational modelling methods. This study highlights the impact of comprehensive understanding of agricultural and food material response to the mechanical operations and its direct relation to the volume of food wasted globally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FOR SUGAR factories with cogeneration plants major changes to the process stations have been undertaken to reduce the consumption of exhaust steam from the turbines and maximise the generated power. In many cases the process steam consumption has been reduced from greater than 52% on cane to ~40% on cane. The main changes have been to install additional evaporation area at the front of the set, operate the pan stages on vapour from No 1 or No 2 effects and undertake juice heating using vapour bleed from evaporators as far down the set as the penultimate stage. Operationally, one of the main challenges has been to develop a control system for the evaporators that addresses the objectives of juice processing rate (throughput) and steam economy, while producing syrup consistently at the required brix and providing an adequate and consistent vapour pressure for the pan stage operations. The cyclic demand for vapour by batch pans causes process disturbances through the evaporator set and these must be regulated in an effective manner to satisfy the above list of objectives for the evaporator station. The impact of the cyclic pan stage vapour demand has been modelled to define the impact on juice rate, steam economy, syrup brix and head space pressures in the evaporators. Experiences with the control schemes used at Pioneer and Rocky Point Mills are discussed. For each factory the paper provides information on (a) the control system used, the philosophy behind the control system and experiences in reaching the current system for control (b) the performance of the control system to handle the disturbances imposed by the pan stage and operate within other constraints of the factory (c) deficiencies in the current system and plans for further improvements. Other processing changes to boost the performance of the evaporators are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents mathematical models to simulate coupled heat and mass transfer during convective drying of food materials using three different effective diffusivities: shrinkage dependent, temperature dependent and average of those two. Engineering simulation software COMSOL Multiphysics was utilized to simulate the model in 2D and 3D. The simulation results were compared with experimental data. It is found that the temperature dependent effective diffusivity model predicts the moisture content more accurately at the initial stage of the drying, whereas, the shrinkage dependent effective diffusivity model is better for the final stage of the drying. The model with shrinkage dependent effective diffusivity shows evaporative cooling phenomena at the initial stage of drying. This phenomenon was investigated and explained. Three dimensional temperature and moisture profiles show that even when the surface is dry, inside of the sample may still contain large amount of moisture. Therefore, drying process should be carefully dealt with otherwise microbial spoilage may start from the centre of the ‘dried’ food. A parametric investigation has been conducted after the validation of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Injection velocity has been recognized as a key variable in thermoplastic injection molding. Its closed-loop control is, however, difficult due to the complexity of the process dynamic characteristics. The basic requirements of the control system include tracking of a pre-determined injection velocity curve defined in a profile, load rejection and robustness. It is difficult for a conventional control scheme to meet all these requirements. Injection velocity dynamics are first analyzed in this paper. Then a novel double-controller scheme is adopted for the injection velocity control. This scheme allows an independent design of set-point tracking and load rejection and has good system robustness. The implementation of the double-controller scheme for injection velocity control is discussed. Special techniques such as profile transformation and shifting are also introduced to improve the velocity responses. The proposed velocity control has been experimentally demonstrated to be effective for a wide range of processing conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As one of the most widely used wireless network technologies, IEEE 802.11 wireless local area networks (WLANs) have found a dramatically increasing number of applications in soft real-time networked control systems (NCSs). To fulfill the real-time requirements in such NCSs, most of the bandwidth of the wireless networks need to be allocated to high-priority data for periodic measurements and control with deadline requirements. However, existing QoS-enabled 802.11 medium access control (MAC) protocols do not consider the deadline requirements explicitly, leading to unpredictable deadline performance of NCS networks. Consequentially, the soft real-time requirements of the periodic traffic may not be satisfied, particularly under congested network conditions. This paper makes two main contributions to address this problem in wireless NCSs. Firstly, a deadline-constrained MAC protocol with QoS differentiation is presented for IEEE 802.11 soft real-time NCSs. It handles periodic traffic by developing two specific mechanisms: a contention-sensitive backoff mechanism, and an intra-traffic-class QoS differentiation mechanism. Secondly, a theoretical model is established to describe the deadline-constrained MAC protocol and evaluate its performance of throughput, delay and packet-loss ratio in wireless NCSs. Numerical studies are conducted to validate the accuracy of the theoretical model and to demonstrate the effectiveness of the new MAC protocol.